24 research outputs found

    Dynamics and Mechanical Stability of the Developing Dorsoventral Organizer of the Wing Imaginal Disc

    Get PDF
    Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called organizer, controls this process. In this paper we study the dynamics and stability of the dorsal-ventral organizer of the wing imaginal disc of Drosophila as cell proliferation advances. Our approach is based on a vertex model to perform in silico experiments that are fully dynamical and take into account the available experimental data such as: cell packing properties, orientation of the cellular divisions, response upon membrane ablation, and robustness to mechanical perturbations induced by fast growing clones. Our results shed light on the complex interplay between the cytoskeleton mechanics, the cell cycle, the cell growth, and the cellular interactions in order to shape the dorsal-ventral organizer as a robust source of positional information and a lineage controller. Specifically, we elucidate the necessary and sufficient ingredients that enforce its functionality: distinctive mechanical properties, including increased tension, longer cell cycle duration, and a cleavage criterion that satisfies the Hertwig rule. Our results provide novel insights into the developmental mechanisms that drive the dynamics of the DV organizer and set a definition of the so-called Notch fence model in quantitative terms

    Notch-mediated repression of bantam mirna contributes to boundary formation in the drosophila wing

    No full text
    10.1242/dev.064774Development138173781-3789DEVP

    Structural insights into Notch receptor-ligand interactions

    No full text
    Pioneering cell aggregation experiments from the Artavanis-Tsakonas group in the late 1980's localized the core ligand recognition sequence in the Drosophila Notch receptor to epidermal growth factor-like (EGF) domains 11 and 12. Since then, advances in protein expression, structure determination methods and functional assays have enabled us to define the molecular basis of the core receptor/ligand interaction and given new insights into the architecture of the Notch complex at the cell surface. We now know that Notch EGF11 and 12 interact with the Delta/Serrate/LAG-2 (DSL) and C2 domains of ligand and that membrane-binding, together with additional protein-protein interactions outside the core recognition domains, are likely to fine-tune generation of the Notch signal. Furthermore, structure determination of O-glycosylated variants of Notch alone or in complex with receptor fragments, has shown that these sugars contribute directly to the binding interface, as well as to stabilizing intra-molecular domain structure, providing some mechanistic insights into the observed modulatory effects of O-glycosylation on Notch activity.Future challenges lie in determining the complete extracellular architecture of ligand and receptor in order to understand (i) how Notch/ligand complexes may form at the cell surface in response to physiological cues, (ii) the role of lipid binding in stabilizing the Notch/ligand complex, (iii) the impact of O-glycosylation on binding and signalling and (iv) to dissect the different pathologies that arise as a consequence of mutations that affect proteins involved in the Notch pathway

    Tarsal-less peptides control Notch signalling through the Shavenbaby transcription factor

    Get PDF
    The formation of signalling boundaries is one of the strategies employed by the Notch (N) pathway to give rise to two distinct signalling populations of cells. Unravelling the mechanisms involved in the regulation of these signalling boundaries is essential to understanding the role of N during development and diseases. The function of N in the segmentation of the Drosophila leg provides a good system to pursue these mechanisms at the molecular level. Transcriptional and post-transcriptional regulation of the N ligands, Serrate (Ser) and Delta (Dl) generates a signalling boundary that allows the directional activation of N in the distalmost part of the segment, the presumptive joint. A negative feedback loop between odd-skipped-related genes and the N pathway maintains this signalling boundary throughout development in the true joints. However, the mechanisms controlling N signalling boundaries in the tarsal joints are unknown. Here we show that the non-canonical tarsal-less (tal) gene (also known as pri), which encodes for four small related peptides, is expressed in the N-activated region and required for joint development in the tarsi during pupal development. This function of tal is both temporally and functionally separate from the tal-mediated tarsal intercalation during mid-third instar that we reported previously. In the pupal function described here, N signalling activates tal expression and reciprocally Tal peptides feedback on N by repressing the transcription of Dl in the tarsal joints. This Tal-induced repression of Dl is mediated by the post-transcriptional activation of the Shavenbaby transcription factor, in a similar manner as it has been recently described in the embryo. Thus, a negative feedback loop involving Tal regulates the formation and maintenance of a Dl+/Dl- boundary in the tarsal segments highlighting an ancient mechanism for the regulation of N signalling based on the action of small cell signalling peptide
    corecore